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SUMMARY

Most random time series recorded in the natural (uncontrolled) environment
such as in the atmosphere are affected by the variations of the environment.
These time series are statistically nonstationary. This is particularly true
for remote observations of atmosphere trace constituents, since the radiometers

may see several layers of constituents over a large range of altitudes.

While a very extensive theory exists on the analysis of stationary random
processes, there is no generally applicable theory and methodology for analysis
of nonstationary time series. In Section I, a review and critical discussion
will be made on the existing methods for analysis of nonstationary time series.
In Section II, a new algorithm for splitting nonstationary timé series, which
was originally proposed by R. R. Jayroe, Jr., will be presented and discussed,
This algorithm has been applied to analysis of the sunspot data. Finally,

some conclusions will be drawn in Section III.
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Section |
METHODS FOR ANALYZING NONSTATIONARY DATA

Generally speaking, there are three types of approaches to the analysis
of nonstationary random time series.. The first follows the classical theory of
stationary time series; statistical quantitiés such as mean, correlation and
spectrum are defined much the same ways asifor stationary time series except
that an additional time or freqﬁgncy'parametef‘is introduced. The formalism
of the approach may be similar to stationary time series analysis, yet the
physical interbretation'of such double-parameters quantities is a critical issue

and not without ambiguity (ref. 1).

The second approach follows the model construction method by assuming that
the nonstationary time series consists of a‘slbw—varying trend, a periodic
component and stationary random component. The basic strategy 6f this approach
i§ to split the nonstationary time series into its components, and then analyze

each component separately (ref. 2).

It is intereéting to note that both above-mentioned references appeaf in
the same year, 1966, and that both are supposed to present general methods for
analysis of nonstationary time series. However,btheir treatments are exclusive
of each other; reference 1 discusses only the classical formal approach, while
reference 2 only the trend-elimination approach. This might indicate a degree

of subjectivity in dealing with nonstationary processes.

The third approach is a further refinement of the first approach, in that
an optimum filterihg dperation is derived and performed on the double-parameters
correlation or spectrum function obtained from the ensemble average (ref. 3).
Two test functions of error measures needed to be assumed, which will be
minimized to obtain its optimum smoothing feature. The whole formalism seems
to be too complicated to be of practical application. For the latter reason,

no more discussion will be made on this approach.

It may be fair to say that the classical ensemble approach is easier to

process, but harder to interpret the obtained results physically. On the other

1-1
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hand, the trend-elimination approach is harder to process, but easier to
interpret the obtained results. 1In particular, when there exists only one or
two time series, the later approach has to be adopted. Clearly, either approach
is far from satisfactory for general analysis of nonstationary time series.

Even for dealing particular time series, meaningful results may still require

some ingenuity and some . a priori knowledge from the investigator.

A piecewise detrending method and piecewise weighting method have also
been proposed and applied to the crossed beam data with partial success (refs.
4 through 6). Since these later two methods have been discussed in detail in

the cited references, no more discussions will be made in this report.

In this section, the first two approaches and their merits and disadvéntages
will be reviewed and discussed. Subsection 1.1 presents the formal classical

approach and subsection 1.2 presents the trend-elimination apprbach.

1.1 THE ENSEMBLE APPROACH
Let Xi(t) and Yi(t); 0 <ts<T;1i=1, 2...,} denotes.N pairs of nonsta-

tionary random time series. The mean, variance, covarince, and first-order

probability density functions are then defined by the ensemble averaging as

follows.
1 7 ‘ |
Mean: (e =% _Z X, (t) (1)
i=1
1 ¥ 2
Variance: 6x(t) =X izl [Xi(t) - ﬁx(t)] . ' -(2)
. ~ 1 N
Covarian;e: ny(tl,tz) =X iZl [Xi(tl) -'ﬁx(tl)] [Yi(tz) - ﬁy(tz)l (3) .

First-order probability density:

PX(E)) = [x - X < X(6) < X + ax] (4)
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With the transformation

2 1
1 (5)
t=3 (tl +t2) s
the covariance can be rewritten as
~ " T T
= -5 = 6
ny (tl, t2) ,ny (t 7> £+ 2) (6)

As for spectral densities, there are four differént definitions as follows;
(a) Double frequency spectra

(b) Time~-varying power spectra

(¢) Time-averaging power spectra

.(d) Instantaneous (frequency - time) spectra.

Definitions (a) and (d) are considered to be significant theoretical ways to
analyze nonstationary spectra. Definitions (b) and (c) are experimentally
measurable by direct filtering procedures. Each of these épectra will be

defined next.
1.1.1 Double Frequency Spectrum

Double Fourier transform of the two-times covariance ny (tl, t2) yields

the double frequency spectrum

~

Xy (fl’ f2) = ny (tl, t2) exp[—j21r(fltl - f2t2)] dtl dt2
"
= E [Xi (fl) Yi (fz)] o (7)
where
X(fl) = Xi(t) exp[—jZﬂflt] dt ' o (8)

1-3



TR~1048

NORTHROP SERVICES. INC.

and the asterisk denotes the complex conjugate. In general, the double frequency

spectum is a complex function. With the following change of wvariables.

1
f = > (fl + f2)
(9
g=1f, -1
we have
a _ (1)
Sxy(f,g) = SXy (fl’fZ)
= - +
ny(t,r) exp[~-j2n(ft gt)] dt dr | (10)
1.1.2 Time-Varying Power Spectrum
Each of the random time series, Xi(t), i=1,2...,N, is filtered through

a narrow-bandpass filter with central frequency f and bandwidth B, and then

the instantaneous outputs are squared. Averaging the N outputs and dividing

by B gives the time-varying power spectrum. Mathematically, these operations

can be expressed as follows:

8

Xi(t, f, B) = h(t) Xi(t - 1) dt (11)

where h(t) is the transfer function of the filter whose frequency response

function is given by

1
-

' '_-B_ ! E
Hf(f) f zif.if+2

=0 otherwise. (12)
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Next, -

. . |
Xi(t, f, B) h(Tl) h(Tz) Xi (t - Tl) Xi.(t - 12) drl §T2

4 (13)
Finally, the time-varying power spectrum is
. 1 ¥
GX(t’ f, B) = E’N_ izl xi (t9 f, B) (14) '

which is positive for all values of t and f. If the number of time series, N,

approaches infinite, then the "expected" time-varying power spectrum

N
_ 1 1im 1 2 :
Gx(t, f) = B N N .Z Xi (t9 f,:B)
. i=1
1 0.2 |

is obtained.. This is related to the double frequency spectrum and double-time

covariance;

1 *
Gx(t,f) = 3 H (fl) H(fZ) Sx(fl’ f2) .
exp[-JZN(fl - fz)t] df1 df2
1 . - -
= 3 h(Tl) h(Tz) R, (t Ty, € T2) drl de (16)

-—C0

1.1.3 Time—-Averaging Power Spectra
This spectrum is defined as the time average over T of the time-varying

power spectrum
t + T/2

Gx(t, f) dt' | ' (17)

G, (f, t, T) =

=

t - T/2

1=5
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which is non-negative. It can be rewritten as
T

Cor

- 1 1 : -
G (f, t, T) 3 h(Tl) h(rz) [ T Rx(t =T t rz)dt] dTl drz

(18)

o=

h(Tl) h(Tz) R.X(T1 - Tz;t) dTl dT2

where

1
R (Tl - Ty t) = T R (t -1

X l,t-rz) dt..

The averaging time T can only be determined by trial and error such that T is
long enough to smooth out the instantaneous fluctuation, but short enough not
to introduce significant bias error which reflects the smoothing of nonstationary

trends in the data.

1.1.4 Instantaneous (Frequency—Time) Spectra

This spectrum is obtained by a single Fourier transform of the double-time

covariance with respect to only the time lag Tt;

8

Sxy(f’ t) = ny.(ﬁ, 1) exp(-j2wnfr) dt (19)

This is called instantaneous, since the spectrum is associated with any instant

of time t. Actually, it is a function of frequency and time simultaneously.

From the above definitions.and discussions, it can be seen that this
ensemble approach for analyzing nonstationary time series is not applicable
to remote detection of the atmospherlc alr constituents because there is only

one pair of time series with sulflfctent length of time to - be dealt with.

1-6
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1.2 TREND-ELIMINATION APPROACH

By the trend elimination approach, a random nonstationary time series
is assumed to consist of three independent components;

e Trends

e Periodic components

e Stationary random time series.
The strategy of the approach is to decompose the given time series into each
individual component and then analyze each separately. In fact, many practical
problems may be quite realistically represented by such a model. This fact

may be the best juétification for this approach.

The concept of a trend does not have a clear-cut definition. Generally,
one thinks of it as a smooth change of the phenomenum under consideration over
a-long period of time, but "long" in this connection is a relative term. For
practical purposes, the length of trends should be at least one order of magni-

tude larger than the period of the regular oscillation and random fluctuations.

The concept of oscillations with a constant period is much easier to
grasp and more definite. Seasonal changes with a period of one year and daily
change with 24 hours period are the two most notable and common examples in
natural atmospheric environments. Because the period of these regular
oscillations is known, it will be easier to isolate this component from the

time series.

However long a time series may be, one can never be certain and often not
even reasonably sure that a trend in it is not part of a slow oscillation,
except of course when the time series has terminated for a practical reason
or limited length of measurement. In speaking of a trend, one should bear in
ﬁind the length of the time series to which our statement refers. Perhaps it
would be more accurate to speak of slow or quick movements rather than of trends
and oscillations, but even so the distinction between these two would still

remain a matter of subjective judgement to some extent.

1-7



NORTHROP SERVICES. INC. TR-1048

"1.2.1 Determination of Trend
Since the trend, by the above general description, is smooth over a fairly
long interval of time, it is reasonable to assume that, at least, within a
finite interval around any time t, the trend may be approximated by a poly-
. . . , , ; th ™ ,
nominal in time. Thus, given a time series X(t), an m degree polynominal may

be sought

m .
g(6) = ] a t (20)
1=0 |

where the coefficient a; will be determined by using the time series.

If a polynominal is fitted to the whole time series by the least square
method, it gives the curvilinear regression line of X(t). However, to obtain
a satisfactory trend curve, one would need to have a very high-degree polynominal.
Obviously, this is impractical for most time series with fairly complicated
trend curves. An alternative is to fit a polynominal only to any small‘part
of the time series. The simplest method which also forms the basis of the
majority of the trend elimination method is to use a polynominal of degree
m to consecutive (2n + 1) digital samples, which are taken at an interval of

At and also m<2n.

The coefficients of the polynominal will be determined by the least square

method, i.e., by solving the following system of equations

5 T T i 2 :
—aZ.{. ! Ky - PRENCLD) ]}= 0 (21)
i i=0
i=20,1, 2,...,m and any integer k.
This yields a system of (m + 1) linear equations with (m + 1) unknowns, a .

Here X, denotes the sample X(kAt). Since the middle term is the only one

k
needing evaluated, which is equal to a, 6 at t = 0, the trend will be of the form

n
g(t) = g(kat) = a = j=§n Wj (m,n) Xk+j , : (22)

where wj (m,n) is the function of m and n only. As can be seen equation (22)

is nothing but a weighted moving average of the given time series and the

1-8
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weights are independent of the time series. Further, the weights are symmetric

in n, i.e.
W, (m,n) = W_j (m,n) 3 =0, 41, +2...4n (23)

It can be further proved that the weights for a polynominal of 2m degree and

(2m+1) degree are the same, i.e.,
wj(2m,n) = wj(2m+l, n) j =0, #1, +2...,4n (24)

Tables 1 and 2 (pages 368 and 369, ref. 2) list the weights for polynominals of

degree 2 to 5 with number of samples used being from 5 to 21.

One drawback of the moving average method is its failure to provide the
trend values for the first n and the last n samples of the original time series.

However, it is not a great loss, if the time series is long enough.

1.2.2 Effect of Trend—Elimination By The Moving Average On Other Components
The effect of the moving average on oscillating and random components in

the process of removing the trend will now be discussed.

Let the time series X(t) consisting of three components; a trend Xl(t),
an oscillatory term with a regular period TO. Xz(t), and a stationary random

component X3(t), i.e.,
X(t) = Xl(t) + X2(t) + X3(t) (25)

Let the operation of the moving average for trend removed be denoted by T[ ],

then

TIX(e)] = T[X (e)] + TIX,(t)] + T[X5(e)] ' (26)

It will now be assumed that the method of determining the trend is com-

pletely correct in the sense that

TlX; (8] = X, (0) | | (27)

1-9
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Subtracting the above two equations to remove the trend,“

Y(t) = X(t) - T[X(£)]

1l

= X, (6) + X () - T[Xy ()] = T[Xy(£)] (28)

Clearly, the last two terms denotes the effect of the moving average on the
oscillating and random combonents. Consider first T[Xz(t)]. To analyze this
term in general is quite difficult, so a simple case will be considered where
Xz(t) is a sine wave and the weights of the moving average are constant.

Hence,

T[Xz(t)] = T[X, (i8t)]
1 n -
= 3og L sinlf + 8£(i-3)]
j=-n
.1 _
1 sin E—(2n+l) Af
") 2n+1 1 sin[f_ + (ntl) Af] 29
sin 3 Af

which is a sine wave of the same frequency and phase as the orignal, but with
the amplitude reduced by the factor shown in the paraenthese { }. Thus, the
term T[XZ] will be small if n is large, or if 1/2 (2n+l) Af is a multiple of =,
i.e., if the length of the moving average equals a multiple of the period of
the oscillation. On the other hand, if both ﬁ and Af are small, then the factor
of'reduction of amplitude will be approximately equal to unity. This implies
then that T[Xz(t)] ~ Xz(t). Hence, the moving average has eliminated tHe oscil-

lating component as well as the trend. This result is expected, since a slow

ocillation is treated as a trend by the moving aﬁerage and eliminated accordingly.

Generally, the moving average will emphasize the shorter oscillations at the
expense of the longer ones. It is not easy to exhibit the precise effect of
the moving average when the weights are unequal and the Xz(t)-is not harmonic,

but evidently the same kind of situation is apt to arise.

Next, consider the effect of the simple average on the random component

X3(t), i.e.,

1-12
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T[X5(t)] = T[X (iae)]

1
2n+1l

n .
I X0+ 1) bl (30)
j=-n

It is noted that consecutive terms of X3(iAt) are less correlated than the con-
secutive terms of T[XB(iAt)], since T[X3(ilAt)] and T[X3(12At)] have (2n+l1) -
(i2 - il) terms of X3(t) in common, if (i2 - il) < 2n+l. Thus, the effect of
the moving average is to introduce some artificial correlation or coherence to

the random component.

In summary, the effect of taking a moving average of random time series
will then be to generate an oscillatory time series, provided the weights are
such as to give a positive correlation between successive members of the generated

series, a condition which is always realized in moving average for trend-fitting.

Pugachev (ref. 7) gave a more rigorous derivation of the condition for
the applicability of the straight moving average.to the effect that the random
function should be approximately linear over the period To of the moving average
and the mean value of the covariance over a square with sides of To around the
mid-point (t,t) should be small. It would be expected that similar conditions

should be also imposed on the weighted moving average.

One method for reducing effects of the moving average on components other
than the trend may be described as follows: Apply the trend-elimination operator

T repeatedly, say m times, to the output of each preceding operation, one then

obtains
m m m m '
T[] = TX ] + TUX,] + TUIX,] (31)

Assume that the method of determining the trend is completely correct in the

sense that

TIx 1 =X

1-13
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then

m ‘ '
T'[X] = X, + T"[X,] + T"[X,] | (32)
1 2 3 :
Now, it has been shown that the amplitude of T[X2] is reduced by a factor R < 1
for each operation, and that the expected standard derivation of T[XB] is reduced
-1
by a factor of (¥2m+1) ~. Hence, after'a sufficient number of moving averages,

the last two terms may be made as small as desired and

Tn[X] = X, for m large

1

.

and

Y(£) = X(t) - T'[X] = X,(t) + Xy(t). | (33)
Next, there is a need to separate the remaining two componénts Xz(t) and
X3(t) from Y(t). If the period of Xz(t) is known as in many practical cases,

then this separation is fairly easy. Let the known period be denoted by To’

and break the time series Y(t) into shorter pieces with length To.- That is,
{y, (&)} 1 -1T <t<iT,
with i = 1, 2,...,M i.T/TO

Take the ensemble average of {Yi} : -

T (®) =y Z Y, (t)
o i=1
M
1
= _Z [X, ;&) + X5 4 (£)]
i=1
M :
= X,(t) + -ﬁ izl Xy 4 (8 - A (34)

For a large M, the last term becomes small. Thus,

o YTO(t) = X2(t)
and o (35)
X3(t) = Y(t) - YTO(t)

1-14
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Section Il . .
ENVELOPE ALGORITHM FOR SPLITTING TIME SERIES

The envelope algorithm for splittihg nonstationary time series will be
described first and then discuss its characteristics. This algorithm was
originally proposed by R. R. Jayroe, Jr. Next, results of application of the

algorithm to the sunspot data will be presented.

2,1 THE ENVELOPE ALGORITHM

The use of the concept of an envelopé function of a time series in communi-
cation engineering is not new and has been studied, for example, by R. Deutsch
(ref. 8). However, the use of an envelope as proposed by R. Jayroe is different
from that treated in the given reference. The reason for using the envelope
algorithm stems from the following argument. If one plots and examines the
time series to be worked with, it is possible to draw a line through the data
about which the data fluctuates. If the data values of this line are subtracted
from the original data, then the data will oscillate approximately about a zero
value and no long term trends will be present. The envelope algorithm attempts

to approximate such a line.

The envelope algorithm may be described as follows: 1let the given time
series under consideration be x(t), t > 0. Connecting any two consecutive
peaks (or local maxima) in the given time series by a.straight line yields a
continuous, piecewise linear function, El(t)'. Similarily, connecting any two
consecutive troughs (or local minima) in the time series by a straight line also’
yields a continuous, piecewise linear function, Ez(t). Let the arithmetic

mean of the above two functions be denoted by E(t); i.e.,
E(t) = 3 (B, (£) + E,(6)) | |
: T2t 2 | (36)

and the oscillation of the original time series about this mean be denoted by

y(t); i.e.,

y(t) = x(t) - k(). . : (37)

2-1
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It is obvious that y(t) has a more rapid variation than E(t) (Figure 1). Thus,
for the sake of convenient discussion, y(t) and E(t) will be called, respectively,

the rapid-varying and slow-varying components of the original data.

2.2 SOME CHARACTERISTICS OF THE ENVELOPE ALGORITHM

Since the formulation of the envelope algorithm is not in a form amendable
for a general mathematical analysis, some characteristics of the algorithm will
be discussed by examining how it will split several types of simple deterministic

stationary time series as given below.

(A) For a time series consisting of two sine waves with different frequencies,

x(t) = a; sinflt + a, sinf2§

with fl < f2 and alfl < a2f2. The slow-varying component will be, essentially,

E(t) = a

1 sinf. t

1

and the rapid-varying component

y(t) = a2 sinfzt
That is to say, the envelope algorithm, essentially, breaks the sum of two sine
waves into its individual wave form. If the condition a.f, < a f2 is not met,

171 2
then more complicated splitting than the above may result.

(B) For a time series like an amplitude modulated signal, i.e.;

f

x(t) =f(a + b cosfzt? cosf;t with fl > £,

where fl is the carrier frequency.' The slow-varying component will be, essen-

tially, zero

E(t) = 0,
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while the rapid-varying component is the same as the original signal. This

is because both El(t) and E2(t) are symmetric about x = 0 and with opposite

signs.
(C) For a time series like a fréquency modulated signal; i.e.;
x(t) = a cos[fl + fz(t)]t,
where fl is the carrier frequency and‘fz(t) is the time dependent true signal.

The slow-varying component is identical to the original signal. This is because

both El(t) and Ez(t) are parallel to x = 0 with equal (but opposite) distance
from x = 0.

(D) Consider a more complex stationary deterministic time series defined as
follows:

x(t)

a; 31nfl§ + a, 81nf2t, for 2mT < t < (2m + 1T

a; sinflt + a, éinf3t, for 2m+ 1)T < t < (2m + 2)T

where m = 0, 1, 2, 3 and T is some constant, with f < a,f

<f, < f 27

1 30 a1

and alfl < a3f3.

The corresponding slow-varying component will be, essentially,
E(t) = a; sinf.t for t > 0,

1

while the rapid-varying component will be

az'sinf t for 2mT < t < (2mt+1)T

y(t) 2

1l

a, sinf3t for (2mt1)T < t < (2m+2)T
This example points out that the envelope algorithm can cause different
types of signal splitting on different portions of a time series, if signal

wave form characteristics are different on different portions of the time series.

2-3
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So far, only some deterministic stationary time series have been discussed.
Of course, what is really of interest is the random time series, either stationary

or non-stationary. For a stationary random time series
x(t) = x;(8) + x,(t),

where xl(t) and xz(t) are both band-width limited white noises, respectively,

with the following frequency ranges:

£, 21, for xl(t).
f3 < f ;_f4 for x2(t)
and
£y << 1t
The slow-varying and rapid-varying components will be, essentially,
E(t) = xl(t)
and
y(t) = x,(t),

for case (A). On the other hand, for a stationary random time with -arbitrary
spectral density, there is simply no way to tell in advance what the slow

varying and rapid-varying components will be.

2.3  APPLICATION TO THE SUNSPOT DATA

The record of sunspot number variation over the last 220 years which is
often simply called the sunspot data, has been investigated extensively
(refs. 9 through 11). These data were chosen to test the performance of the
envelope algorithm for detecting periodicity in the variation of the sunspot

number.

2-4
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The sunspot data used is a record of monthly average number of dark spots
on the sun surface from 1745 to 1965 (Figure 2). Bésically, it has been observed
that there is a dominant period of 22 years, which consists of one positive and
one negative phase with 11 years each, and that there might exist. longer
periods - about 80 and 100 years. However, these longer periods are not well
established yet, because the total available observation record is not suffi-

ciently long enough for an accurate statistical estimation.

The purpose of the test is to find out whether the above observed results

can be substantiated with the aid of the envelope algorithm.

Figures 3 and 4 show the slow-varying and'rapid—varying components,
respectively, of the original data through one application of the envelope
algorithm. This pair of components will be called as the first generation.

One can see clearly the justification for calling one component as the slow-
varying .and the other as a rapid-varying component of the original time series.
Next, the obtained slow-varying component (Figure 3) is regarded as the original
time series. The envelope algorithm is applied on it once again. The second-
generation slow-varying and rapid-varying components are obtained as shown in
Figures 5 and 6. The above process is repeated obtaining the third, fourth,
fifth, and higher-order generation components. This process has been carried
through the fifth generation on the sunspot data. They are shown in Figures 7
through 12. The application of the envelope algorithm was stopped at the fifth
generation for the obvious reason that any further splitting of the resulting
slow-varying component will be good only for studying periodicity well exceeding

100 years.

Comparing both the slow-varying and rapid-varying components, respectively,
from the successive generations, the higher frequency components were gradually
removed by each application of the envelope algorithm as expected. This is
analogous to successive applications of a series of low-pass filters; each of
which has progressively higher low cut-off frequency, on the resulting output
from the preceding filtering operation. The advantage of the envelope algorithm
technique over the conventional digital filtering technique is its faster

computation and no requirement for specifying any integration time constant,
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while the disadvantage is the lack of information on the frequency characteristics

for each stage of signal splitting.

In order to investigate the periodicity of the sunspot déta, the autocor-
relation coefficient for the original data and the rapid-varying component
from each generation were calculated. Figures 13 and 14 show the autocorrela-
tions for the original data with integration constants of 110 years and 78 years,
respectively. Both curves indicates very clearly the periodicity of about 11

years. In addition, Figure 14 may also indicate a period of 80 years (960 months).

Figures 15 through 20 show the autocorrelation coefficients for the rapid-
varying components from the 18t through Sth generations by the envelope algorithm.
The first five autocorrelations used an integration constant of 110 years, while
the last curve used 78 years. No obvious peak except at t=0 is seen in the
first-generation autocorrelation. In the second generation autocorrelation, a
possible period of 11 years started to emerge, and a more definite indication of
this period appears in the third generation autocorrelation curve. No clear
and definite indication of periods may be derived from the fourth generation
autocorrelation. The fifth generation autocorrelations with T=110 and 78 years

both indicate a very definite period of about 105 years.

It may be concluded that the periodicity of the sunspot data of 11 years,
80 years, and 100 years, which are reported by previous investigations, has
been confirmed again by the correlation analysis of the components obtained by
the envelope algorithm. It should be noted that these different periods were
observed from the different generations, but there is no rule established for
selecting the number of generations one should apply to the envelope algorithm.
Further tests of the envelope algorithm on various types of time series will be
needed before more definite performance of the new algorithm for splitting time

series may be known.
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’ Section.!ll .,
CONCLUSIONS

It has been shown that the crossed-beam test data obtaiﬁed in the atmosphere
are highly nonstationary and that for some cases the piecewise detrending and
weighting methods can be employed to suppress the nonstationary trends to
satisfactory results. However, it was also found from more recent analysis of
infrared crossed-beam data that the above piecewise techniques were not completely
adequate to deal with the nonstationarity encountered in strong environmental

variations.

From the review of the available existing methods fof analysis of non-
stationary random processes, it is clear that none of the existing methods is
generally applicable-to all nonstationary random -time series. .As for the crossed-
beam data, it seems that a logical way is to try the trend-elimination approach
as described in Section I. It is thué reéommended to implement a computer-
program for the algorithms, namely, equations (22) through (24) incorporating
Tables 1 and 2. Secondly, the program will be used to process the Haswell
crossed-beam test data (ref. 12). Finally, the resulting crossed-beam predic-
tion will then be compared with other independent direct measurements for
establishing the feasibility of suppressing nonstationary environmental varia-

tions by the trend elimination method.

Some characteristics of the envelope algorithm for splitting the random
time series have been discussed based on several types of stationary time
series. The actual application of the algorithm to the sunspot data has
confirmed the previously observed periods of 11, 80, and 100 years. The
definite performance of the envelope aléorithm is, however, still not certain;

more tests on various types of random time series are warranted.
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